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Abstract

Two-dimensional equations for coupled extensional, flexural and thickness-shear motions of thin plates of piezo-
electric semiconductors are obtained systematically from the three-dimensional equations by retaining lower order
terms in power series expansions in the plate thickness coordinate. The two-dimensional equations are specialized to
crystals of 6 mm symmetry and are simplified by thickness-shear approximation. Propagation of thickness-shear waves
and their amplification by a dc electric field are analyzed.
� 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

Piezoelectric materials are either dielectrics or semiconductors (Auld, 1973). An acoustic wave propagat-
ing in a piezoelectric crystal is usually accompanied by an electric field. When the crystal is also semicon-
ducting, the electric field produces currents and space charge resulting in dispersion and acoustic loss
(Hutson and White, 1962). The interaction between a traveling acoustic wave and mobile charges in piezo-
electric semiconductors is called the acoustoelectric effect which is a special case of a more general phenom-
enon which may be called wave-particle drag (Weinreich et al., 1959). It was also found that an acoustic
wave traveling in a piezoelectric semiconductor can be amplified by application of an initial or biasing
dc electric field (White, 1962). Acoustoelectric effect and acoustoelectric amplification of acoustic waves
have led to many acoustoelectric devices, e.g., Kino (1976), Heyman (1978), Busse and Miller (1981),
and Dietz et al. (1988). The basic behavior of piezoelectric semiconductors and the acoustoelectric effect
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can be described by a linear phenomenological theory (Hutson and White, 1962; White, 1962). More
sophisticated nonlinear theories for deformable semiconductors have also been developed (de Lorenzi
and Tiersten, 1975; Maugin and Daher, 1986).
Piezoelectric devices, dielectrics or semiconductors, often have structural shapes of single or multi-

layered plates, or plates on substrates. Two-dimensional equations for thin piezoelectric dielectric plates
have been developed (Mindlin, 1972; Lee et al., 1987; Tiersten, 1993; Yong et al., 1993) and proved very
effective in device modeling (Wang and Yang, 2000). In this paper we study motions of thin plates of
piezoelectric semiconductors. The three-dimensional equations of linear piezoelectric semiconductors are
summarized in Section 2. Two-dimensional equations for thin plates are derived systematically from the
three-dimensional equations in Section 3. The equations are specialized to crystals of 6 mm symmetry in
Section 4. Propagation of thickness-shear waves under a dc field is analyzed in Section 5. Finally, some con-
clusions are drawn in Section 6.
2. Three-dimensional equations

Consider a homogeneous, one-carrier piezoelectric semiconductor under a uniform dc electric field Ej.
The steady state current is J i ¼ q�nlijEj, where q is the carrier charge, �n is the steady state carrier density
which produces electrical neutrality, and lij is the carrier mobility. The summation convention for repeated
tensor indices is used. When an acoustic wave propagates through the material, perturbations of the electric
field, the carrier density and the current are denoted by Ej, n and Ji. The linear theory for small signals
(Hutson and White, 1962; Wauer and Suherman, 1997) consists of the equations of motion, Gauss�s law
of electrostatics, and the conservation of charge
T ji;j ¼ q€ui;

Di;i ¼ qn;

q _nþ J i;i ¼ 0;
ð1Þ
where ui is the displacement vector, Tij the stress tensor, q the mass density, and Di the electric displacement
vector. A comma followed by an index denotes partial differentiation with respect to the coordinate asso-
ciated with the index. A superimposed dot represents differentiation with respect to time t. The above equa-
tions are accompanied by the following constitutive relations (White, 1962):
T ij ¼ cijklSkl � ekijEk;

Di ¼ eijkSjk þ eijEj;

J i ¼ q�nlijEj þ qnlijEj � qdijNj;

ð2Þ
where the strain tensor Sij, the electric potential /, and the carrier density gradient Nj are defined by
Sij ¼ ðui;j þ uj;iÞ=2;
Ei ¼ �/;i;

Nj ¼ n;j:

ð3Þ
In (2), cijkl, ekij and eij are the elastic, piezoelectric and dielectric constants. dij are the carrier diffusion con-
stants. With successive substitutions form (2) and (3), (1) can be written as five equations for u, / and n
cijkluk;lj þ ekij/;kj ¼ q€ui;

eikluk;li � eij/;ij ¼ qn;

_n� �nlij/;ij þ lijEjn;i � dijn;ij ¼ 0:
ð4Þ
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On the boundary of a finite body with a unit outward normal ni, usually the mechanical displacement ui or
the traction vector Tijni, the electric potential / or the normal component of the electric displacement vector
Dini, and the carrier density n or the normal current Jini are prescribed (Wauer and Suherman, 1997).
3. Derivation of two-dimensional plate equations

Consider a piezoelectric semiconductor plate of thickness 2h as shown in Fig. 1. Part of the plate major
surfaces may be electroded. The electrodes are assumed to be very thin and their mechanical effects will be
neglected as in Mindlin (1972), Lee et al. (1987), Tiersten (1993) and Yong et al. (1993). For a first-order
plate theory of coupled extensional, flexural and thickness-shear motions we make the following expansions
of the mechanical displacement, electric potential and carrier density:
uaðx1; x2; x3; tÞ ffi uð0Þa ðx1; x2; tÞ þ x3uð1Þa ðx1; x2; tÞ; a ¼ 1; 2;
u3ðx1; x2; x3; tÞ ffi uð0Þ3 ðx1; x2; tÞ þ x3u

ð1Þ
3 ðx1; x2; tÞ þ x23u

ð2Þ
3 ðx1; x2; tÞ;

/ðx1; x2; x3; tÞ ffi /ð0Þðx1; x2; tÞ þ x3/
ð1Þðx1; x2; tÞ;

nðx1; x2; x3; tÞ ffi nð0Þðx1; x2; tÞ þ x3nð1Þðx1; x2; tÞ;

ð5Þ
where we have introduced another convention that the indices a and b assume 1 and 2 only but not 3. uð0Þa

are the plate extensional displacements, uð0Þ3 the flexural displacement, and uð1Þa the thickness-shear displace-
ments. uð1Þ3 and uð2Þ3 are the plate thickness stretch displacements accompanying extension and flexure, which
will be eliminated later through a stress relaxation condition. Substitution of (5) into (3) results in the fol-
lowing expressions of the strain, electric field and carrier density gradient:
Sp ffi Sð0Þ
p þ x3S

ð1Þ
p ; p ¼ 1; 2; . . . ; 6;

Ei ffi Eð0Þ
i þ x3E

ð1Þ
i ;

Ni ffi N ð0Þ
i þ x3N

ð1Þ
i ;

ð6Þ
where, under the compact matrix notation (Tiersten, 1969a), the indices p and q range from 1 to 6. The zero
and first order strains are defined as
Sð0Þ
1 ¼ uð0Þ1;1; Sð0Þ

2 ¼ uð0Þ2;2; Sð0Þ
3 ¼ uð1Þ3 ;

Sð0Þ
4 ¼ uð0Þ3;2 þ uð1Þ2 ; Sð0Þ

5 ¼ uð0Þ3;1 þ uð1Þ1 ; Sð0Þ
6 ¼ uð0Þ1;2 þ uð0Þ2;1;

ð7Þ
x3

x1

x1

x2

Electrodes

2h

n

s

Fig. 1. Plan view and cross section of a thin plate of piezoelectric semiconductor.
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and
Sð1Þ
1 ¼ uð1Þ1;1; Sð1Þ

2 ¼ uð1Þ2;2; Sð1Þ
3 ¼ 2uð2Þ3 ;

Sð1Þ
4 ¼ 0; Sð1Þ

5 ¼ 0; Sð1Þ
6 ¼ uð1Þ1;2 þ uð1Þ2;1:

ð8Þ
We note that Sð0Þ
3 and Sð1Þ

3 are involved with uð1Þ3 and uð2Þ3 which are to be eliminated later. The zero and first
order electric fields are given by
Eð0Þ
1 ¼ �/ð0Þ

;1 ; Eð0Þ
2 ¼ �/ð0Þ

;2 ; Eð0Þ
3 ¼ �/ð1Þ; ð9Þ
and
Eð1Þ
1 ¼ �/ð1Þ

;1 ; Eð1Þ
2 ¼ �/ð1Þ

;2 ; Eð1Þ
3 ¼ 0: ð10Þ
The zero and first order gradients of the carrier density are
N ð0Þ
1 ¼ nð0Þ;1 ; N ð0Þ

2 ¼ nð0Þ;2 ; N ð0Þ
3 ¼ nð1Þ; ð11Þ
and
N ð1Þ
1 ¼ nð1Þ;1 ; N ð1Þ

2 ¼ nð1Þ;2 ; N ð1Þ
3 ¼ 0: ð12Þ
Integrating the equations in (1) and their products with x3 through the plate thickness respectively, we
obtain the following two-dimensional equations of motion, Gauss�s law and conservation of charge:
T ð0Þ
ab;a þ tð0Þb ¼ 2hq€uð0Þb ;

T ð0Þ
a3;a þ tð0Þ3 ¼ 2hq€uð0Þ3 ;

T ð1Þ
ab;a � T ð0Þ

3b þ tð1Þb ¼ 2h
3

3
q€uð1Þb ;

Dð0Þ
a;a þ dð0Þ ¼ 2hqnð0Þ;

Dð1Þ
a;a � Dð0Þ

3 þ dð1Þ ¼ 2h
3

3
qnð1Þ;

2hq _nð0Þ þ J ð0Þ
a;a þ jð0Þ ¼ 0;

2h3

3
q _nð1Þ þ J ð1Þ

a;a � J ð0Þ
3 þ jð1Þ ¼ 0;

ð13Þ
where the plate resultants and surface loads of various orders are defined by
fT ðnÞ
ij ;D

ðnÞ
i ; J ðnÞ

i g ¼
Z h

�h
xn3fT ij;Di; J igdx3;

tðnÞj ¼ ½xn3T 3j

h
�h; dðnÞ ¼ ½xn3D3


h
�h;

jðnÞ ¼ ½xn3J 3

h
�h; n ¼ 0; 1:

ð14Þ
Since the plate is assumed to be thin, we make the stress relaxation approximation of vanishing normal
stress T33 = 0. This implies, through (2)1 by setting i = j = 3, the following expression for u3,3 in terms of
other components of the displacement and potential gradients:
u3;3 ¼ � 1

c3333
ðc33kluk;l � c3333u3;3 � ek33EkÞ: ð15Þ
We note that stress relaxation for thin anisotropic or piezoelectric plates can be made in ways more sophis-
ticated than the above, also involving T31 and T32 (Mindlin, 1972). That is not our main interest here. The
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above relaxation involving T33 is the major relaxation because in anisotropic plates couplings among exten-
sions in different directions are usually much stronger than couplings between extensions and shears. We
also note that in (15) u3,3 has been eliminated on the right-hand side because when i = j = 3 the two terms
containing u3,3 will cancel with each other. From (15) the thickness expansion or contraction accompanying
the extension and flexure of the plate due to Poisson�s effect can be found if wanted. Substituting (15) back
into (2)1,2, we obtain the following constitutive relations relaxed for thin plates:
T ij ¼ �cijkluk;l � �ekijEk;

Di ¼ �eikluk;l þ �eijEj;
ð16Þ
where the relaxed material constants are defined by
�cijkl ¼ cijkl � cij33c33kl=c3333;

�ekij ¼ ekij � ek33c33ij=c3333;

�eij ¼ eij þ ei33ej33=c3333:

ð17Þ
We note that the right-hand sides of (16) do not contain u3,3 and T33 = 0 is automatically satisfied by (16).
Integrating (16) and (2)3 through the plate thickness, we obtain the zero order constitutive relations
T ð0Þ
ij ¼ 2hðcð0ÞijklS

ð0Þ
kl � eð0Þkij E

ð0Þ
k Þ;

Dð0Þ
i ¼ 2hðeð0Þijk S

ð0Þ
jk þ �eijE

ð0Þ
j Þ;

J ð0Þ
i ¼ 2hðq�nlijE

ð0Þ
j þ qnð0ÞlijEj � qdijN

ð0Þ
j Þ;

ð18Þ
where, following Mindlin (1972), we have modified �cijkl and �eijk to cð0Þijkl and eð0Þijk through the introduction of
two shear correction factors j1 and j2 by the replacement of the following zero order strains:
Sð0Þ
31 ! j1S

ð0Þ
31 ; Sð0Þ

32 ! j2S
ð0Þ
32 : ð19Þ
The two correction factors should be determined by requiring the two fundamental thickness-shear reso-
nant frequencies obtained from the two-dimensional plate equations to be equal to the corresponding exact
frequencies predicted by the three-dimensional equations. With shear correction factors thus determined,
the two-dimensional plate equations and the exact three-dimensional equations yield the same frequencies
for a particular motion, i.e., the thickness-shear vibrations of a plate in the two fundamental thickness-
shear modes. Multiplying both sides of (16) and (2)3 by x3 and integrating the resulting equation through
the plate thickness we have the first order constitutive relations
T ð1Þ
ij ¼ 2h

3

3
ð�cijklSð1Þ

kl � �ekijE
ð1Þ
k Þ;

Dð1Þ
i ¼ 2h

3

3
ð�eijkSð1Þ

jk þ �eijE
ð1Þ
j Þ;

J ð1Þ
i ¼ 2h

3

3
ðq�nlijE

ð1Þ
j þ qnð1ÞlijEj � qdijN

ð1Þ
j Þ:

ð20Þ
In summary, we have obtained the two-dimensional equations of motion, Gauss�s law and conservation
of charge (13), the constitutive relations (18) and (20), and the displacement, potential and carrier density
gradients (7)–(12). With successive substitutions, (13) can be written as nine equations for the nine un-
knowns of uð0Þ1 , u

ð0Þ
2 , u

ð0Þ
3 , u

ð1Þ
1 , u

ð1Þ
2 , /

(0), /(1), n(0), and n(1). At the boundary of a plate with in-plane unit exte-
rior normal n and in-plane unit tangent s (Fig. 1), we may prescribe
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T ð0Þ
nn or u

ð0Þ
n ; T ð0Þ

ns or u
ð0Þ
s ; T ð0Þ

n3 or u
ð0Þ
3 ;

T ð1Þ
nn or u

ð1Þ
n ; T ð1Þ

ns or u
ð1Þ
s ;

Dð0Þ
n or /ð0Þ; Dð1Þ

n or /ð1Þ;

J ð0Þ
n or nð0Þ; J ð1Þ

n or nð1Þ:

ð21Þ
4. Equations for crystals of 6 mm symmetry

Quite a few piezoelectric semiconductors are of 6 mm symmetry. This includes, e.g., widely used beryllium
oxide (BeO), cadmium selenide (CdSe), cadmium sulfide (CdS), zinc oxide (ZnO), and zinc sulfide (ZnS)
(Auld, 1973). For crystals of 6 mm symmetry, when the 6-fold axis is along the x3 axis, the material tensors
in (2) can be represented by the following matrices under the compact matrix notation (Tiersten, 1969a):
c11 c12 c13 0 0 0

c12 c11 c13 0 0 0

c13 c13 c33 0 0 0

0 0 0 c44 0 0

0 0 0 0 c44 0

0 0 0 0 0 c66

0
BBBBBBBB@

1
CCCCCCCCA
;

0 0 e31
0 0 e31
0 0 e33
0 e15 0

e15 0 0

0 0 0

0
BBBBBBBB@

1
CCCCCCCCA

T

;

e11 0 0

0 e11 0

0 0 e33

0
B@

1
CA; ð22Þ
where c66 = (c11 � c12)/2, and the superscript �T� indicates matrix transpose. lij and dij have the same struc-
ture as eij. The constitutive relations take the following form:
T ð0Þ
11 ¼ 2hð�c11uð0Þ1;1 þ �c12u

ð0Þ
2;2 þ �e31/

ð1ÞÞ;
T ð0Þ
22 ¼ 2hð�c12uð0Þ1;1 þ �c11u

ð0Þ
2;2 þ �e31/

ð1ÞÞ;
T ð0Þ
3a ¼ 2h½j2c44ðuð0Þ3;a þ uð1Þa Þ þ je15/

ð0Þ
;a 
;

T ð0Þ
12 ¼ 2hc66ðuð0Þ1;2 þ uð0Þ2;1Þ;

ð23Þ

T ð1Þ
11 ¼ 2

3
h3ð�c11uð1Þ1;1 þ �c12u

ð1Þ
2;2Þ;

T ð1Þ
22 ¼ 2

3
h3ð�c12uð1Þ1;1 þ �c11u

ð1Þ
2;2Þ;

T ð1Þ
12 ¼ 2

3
h3c66ðuð1Þ1;2 þ uð1Þ2;1Þ;

ð24Þ

Dð0Þ
a ¼ 2h½je15ðuð0Þ3;a þ uð1Þa Þ � e11/

ð0Þ
;a 
;

Dð0Þ
3 ¼ 2hð�e31uð0Þa;a � �e33/

ð1ÞÞ;
ð25Þ

Dð1Þ
a ¼ � 2

3
h3e11/

ð1Þ
;a ; ð26Þ

J ð0Þ
a ¼ 2hqð��nl11/

ð0Þ
;a þ nð0Þl11Ea � d11nð0Þ;a Þ;

J ð0Þ
3 ¼ 2hqð��nl33/

ð1Þ þ nð0Þl33E3 � d33nð1ÞÞ;
ð27Þ
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J ð1Þ
a ¼ 2

3
h3qð��nl11/

ð1Þ
;a þ nð1Þl11Ea � d11nð1Þ;a Þ; ð28Þ
where
�c11 ¼ c11 � c213=c33; �c12 ¼ c12 � c13c32=c33;

�e31 ¼ e31 � e33c31=c33; �e33 ¼ e33 þ e233=c33;
ð29Þ
and j1 = j2 = j. Substitution of (23)–(28) into (13) yields the following equations for extension
�c11u
ð0Þ
1;11 þ c66u

ð0Þ
1;22 þ ð�c12 þ c66Þuð0Þ2;21 þ �e31/

ð1Þ
;1 þ 1

2h
tð0Þ1 ¼ q€uð0Þ1 ;

c66u
ð0Þ
2;11 þ �c11u

ð0Þ
2;22 þ ð�c12 þ c66Þuð0Þ1;12 þ e15/

ð1Þ
;2 þ 1

2h
tð0Þ2 ¼ q€uð1Þ2 ;

ð30Þ
flexure
j2c44ðuð0Þ3;aa þ uð1Þa;aÞ þ je15/
ð0Þ
;aa þ

1

2h
tð0Þ3 ¼ q€uð0Þ3 ð31Þ
thickness-shear
�c11u
ð1Þ
1;11 þ c66u

ð1Þ
1;22 þ ð�c12 þ c66Þuð1Þ2;21 � 3h�2j2c44ðu

ð1Þ
1 þ uð0Þ3;1Þ � 3h�2je15/

ð0Þ
;1 þ 3

2h3
tð1Þ1 ¼ q€uð1Þ1 ;

c66u
ð1Þ
2;11 þ �c11u

ð1Þ
2;22 þ ð�c12 þ c66Þuð1Þ1;12 � 3h�2j2c44ðu

ð1Þ
2 þ uð0Þ3;2Þ � 3h�2je15/

ð0Þ
;2 þ 3

2h3
tð1Þ2 ¼ q€uð1Þ2 ;

ð32Þ
electrostatics
� e11/
ð0Þ
;aa þ je15ðuð0Þ3;aa þ uð1Þa;aÞ þ

1

2h
dð0Þ ¼ qnð0Þ;

� e11/
ð1Þ
;aa þ 3h�2�e33/

ð1Þ � 3h�2�e31uð0Þa;a þ
3

2h3
dð1Þ ¼ qnð1Þ;

ð33Þ
and conservation of charge
_nð0Þ � �nl11/
ð0Þ
;aa þ nð0Þ;a l11Ea � d11nð0Þ;aa þ

1

2q
jð0Þ ¼ 0;

_nð1Þ � �nl11/
ð1Þ
;aa þ nð1Þ;a l11Ea � d11nð1Þ;aa � 3h�2ð��nl33/

ð1Þ þ nð0Þl33E3 � d33nð1ÞÞ þ
2

2h3q
jð1Þ ¼ 0:

ð34Þ
5. Propagation of thickness-shear waves

Thickness-shear waves are widely used in plate piezoelectric devices (Wang and Yang, 2000). As an exam-
ple for the application of the above equations we study the propagation of thickness-shear waves in a plate of
6 mm crystals. These waves are usually accompanied by weak flexural deformations. They are described by
uð1Þa , u

ð0Þ
3 , /

(0), and n(0), and are governed by (31)–(34)1 which are not coupled to the other equations.

5.1. Thickness-shear approximation

The weak flexural deformation accompanying thickness-shear can be eliminated by the so called
thickness-shear approximation (Tiersten, 1969a) which further simplifies the problem. We consider the
case when there are no surface loads. This means that the major surfaces of the plate are traction free,
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unelectroded without surface free charge, and that the surfaces are perfect without broken surface bonds so
that there is no surface charge and current due to semiconduction (Navon, 1986). Enlightened by the thick-
ness-shear approximation for a system of one-dimensional equations for quartz (Tiersten, 1969a), we pro-
ceed as follows. From (31) and (33)1, we obtain, by eliminating /(0),
j2 c44 þ
e215
e11

� 	
ðuð0Þ3;aa þ uð1Þa;aÞ �

je15q
e11

nð0Þ ¼ q€uð0Þ3 : ð35Þ
Substitution of the following wave solution into (35),
uð0Þ3 ¼ A3 exp½iðxt þ naxaÞ
;
uð1Þb ¼ Ab exp½iðxt þ naxaÞ
;
nð0Þ ¼ B exp½iðxt þ naxaÞ
;

ð36Þ
where Ai and B are constants, results in the following relation:
j2 c44 þ
e215
e11

� 	
ð�A3nana þ AainaÞ �

je15q
e11

B ¼ �qx2A3: ð37Þ
We are interested in long waves with small wave numbers na. The term quadratic in na in the above equation
can be dropped. Also, since for long thickness-shear waves the frequency x is very close to the exact thick-
ness-shear frequency of an infinite plate, we make the following substitution in (37):
x2 � x2
1 ¼ p2c44

4qh2
¼ 3j

2c44
qh2

; ð38Þ
where x1 is the exact infinite plate thickness-shear frequency. Note that (38) does not have the stiffening
effect due to piezoelectric coupling. This is because for a plate of 6 mm crystals with the 6-fold axis along
the plate normal, exact thickness-shear modes from the three-dimensional equations are elastic only with-
out piezoelectric coupling. In this case the shear correction factor j2 = p2/12 (Yang and Zhang, 1999).
These lead to the following approximate version of (37):
A3 ¼ � h2

3
1þ e215

c44e11

� 	
inaAa þ

4h2je15q
p2c44e11

B; ð39Þ
which is equivalent to the differential relation
uð0Þ3 ¼ � h2

3
ð1þ k215Þuð1Þa;a þ

4h2je15q
p2c44e11

nð0Þ; ð40Þ
where we have denoted
k215 ¼
e215

c44e11
: ð41Þ
Substituting (40) into (32) and (33)1, neglecting the third and higher order derivatives of u
ð0Þ
3 under the

long wave approximation, we obtain the following equations under the thickness-shear approximation:
c�11u
ð1Þ
1;11 þ c66u

ð1Þ
1;22 þ c�12u

ð1Þ
2;12 � qx2

1u
ð1Þ
1 � 3h�2je15/ð0Þ

;1 � je15q
e11

nð0Þ;1 ¼ q€uð1Þ1 ;

c66u
ð1Þ
2;11 þ c�11u

ð1Þ
2;22 þ c�12u

ð1Þ
1;12 � qx2

1u
ð1Þ
2 � 3h�2je15/ð0Þ

;2 � je15q
e11

nð0Þ;2 ¼ q€uð1Þ2 ;

� e11/
ð0Þ
;aa þ je15uð1Þa;a þ k215

h2

3
qnð0Þ;aa ¼ qnð0Þ;

ð42Þ
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where
c�11 ¼ �c11 þ j2c44ð1þ k215Þ;

c�12 ¼ �c12 þ c66 þ j2c44ð1þ k215Þ;
ð43Þ
and (34)1 remains the same.

5.2. Propagation of thickness-shear waves

We consider waves propagating in the minus x1 direction with u2 = 0 and o/ox2 = 0. The biasing electric
field is applied in the x1 direction. Real devices are finite plates. A biasing electric field in the x1 direction
can be produced by side electrodes on the lateral surfaces where x1 = constant, which is usually called a
lateral electric field (Meitzler et al., 1988) in comparison with the thickness field in the x3 direction. Then
(42) and (34)1 reduce to
c�11u
ð1Þ
1;11 � qx2

1u
ð1Þ
1 � 3h�2je15/ð0Þ

;1 � je15q
e11

nð0Þ;1 ¼ q€uð1Þ1 ;

� e11/
ð0Þ
;11 þ je15u

ð1Þ
1;1 þ k215

h2

3
qnð0Þ;11 ¼ qnð0Þ;

_nð0Þ � �nl11/
ð0Þ
;11 þ nð0Þ;1 l11E1 � d11n

ð0Þ
;11 ¼ 0:

ð44Þ
Let
uð1Þ1 ¼ A exp½iðn1x1 � xtÞ
;

/ð0Þ ¼ B exp½iðn1x1 � xtÞ
;

nð0Þ ¼ C exp½iðn1x1 � xtÞ
;

ð45Þ
where A, B and C are undetermined constants. Substitution of (45) into (44) yields the following linear,
homogeneous equation for A, B and C:
qðx2 � x2
1Þ � c�11n

2
1 �3h�2je15in1 � je15q

e11
in1

je15in1 e11n
2
1 �k215

h2

3
qn21 � q

0 �nl11n
2
1 iðn1l11E1 � xÞ þ d11n

2
1

2
66664

3
77775

A

B

C

8><
>:

9>=
>; ¼ 0: ð46Þ
For nontrivial solutions the determinant of the coefficient matrix has to vanish, which gives the following
dispersion relation:
qx2 ¼ q�x2
1 þ c�11n

2
1 �

�nql11
e11½d11n21 þ iðl11E1n1 � xÞ


� 1þ 1
3
h2k215n

2
1

� 	
½qðx2 � x2

1Þ � n21c
�
11
 þ j2k215c44n

2
1

� �
; ð47Þ
where
q�x2
1 ¼ qx2

1 þ q
3j2c44
qh2

e215
e11c44

¼ qx2
1ð1þ k215Þ; ð48Þ
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is the piezoelectrically stiffened infinite plate thickness-shear frequency when there exists a coupling to an
electric filed in the x1 direction. The denominator of the right-hand side of (47) indicates that wave ampli-
fication may occur when l11E1n1 � x changes it sign or
x
n1

¼ l11E1; ð49Þ
i.e., the acoustic wave speed is equal to the carrier drift speed (White, 1962). When the semiconduction is
small, (47) can be solved by an iteration or perturbation procedure. As the lowest (zero) order of approx-
imation, we neglect the semiconduction and (47) reduces to the dispersion relation of piezoelectric thick-
ness-shear waves
qx2
ð0Þ ¼ q�x2

1 þ c�11n
2
1; ð50Þ
which is dispersive but not dissipative. For the next order we substitute (50) into the right-hand side of (47)
and obtain
qx2
ð1Þ ¼ q�x2

1 þ c�11n
2
1 �

�nql11
e11½d11n21 þ iðl11E1n1 � xð0ÞÞ


� 1þ 1
3
h2k215n

2
1

� 	
½qðx2

ð0Þ � x2
1Þ � n21c

�
11
 þ j2k215c44n

2
1

� �
; ð51Þ
which is dispersive and dissipative.

5.3. Numerical results

For numerical results we consider CdS with (Auld, 1973; Gualtieri et al., 1994)
q ¼ 4820 kg=m3;

c11 ¼ 9:07; c33 ¼ 9:38; c44 ¼ 1:504; c12 ¼ 5:81; c13 ¼ 5:10� 1010 N=m2;

e15 ¼ �0:21; e31 ¼ �0:24; e33 ¼ �0:44 C=m2;

e11 ¼ 9:02e0; e33 ¼ 9:53e0; e0 ¼ 8:854� 10�12 F=m:

ð52Þ
The mobility of electrons and holes of CdS at 300 K are (Navon, 1986)
ln ¼ 340; lp ¼ 50 cm2=V s: ð53Þ
We consider electrons with ln. The diffusion constants can be determined from the Einstein relation (Na-
von, 1986)
D ¼ kT
qe

l; ð54Þ
where T is the absolute temperature, and k the Boltzmann constant. At room temperature kT/qe = 0.026 V
(Navon, 1986) where qe = 1.602 · 10�19 C is the electronic charge. Present technology can make a material
with �n of any value between an insulator and a conductor. We use �n ¼ 1013=m3 which is considered small in
the sense that the conduction term in (51) is much smaller than other terms so that the perturbation solu-
tion is valid.
We plot the real parts of x(0) and x(1) versus n1 in Fig. 2. The dimensionless wave number X and the

dimensionless frequency Y of different orders are defined by
X ¼ n1

�
p
2h

; Y ð0Þ ¼ xð0Þ=�x1; Y ð1Þ ¼ Refxð1Þg=�x1: ð55Þ
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Fig. 2. Dispersion relations of thickness-shear waves; X = dimensionless wave number; Y = real part of the dimensionless frequency;
c = normalized biasing electric field.
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c is a dimensionless number given by
Fig. 3.
field; k
c ¼ l11E1
�x12h

p

�
; ð56Þ
which may be considered as a normalized electric field. It represents the ratio of the electron drift velocity
and a quantity related to the acoustic wave speed. In applications long thickness-shear waves with a small X
are useful. When X = 0 thickness-shear waves have a nonzero cutoff frequency which is normalized to one
in the figure. The behavior of thickness-shear waves in a piezoelectric insulator is described by Y(0) which is
dispersive. It can be seen that semiconduction causes additional dispersion and a shift of the cutoff fre-
quency. This conduction induced dispersion and frequency shift vary according to the dc electric biasing
field.
Fig. 3 shows the imaginary part of x(1) versus c which represents E1. k = 2p/n1 is the wavelength. The

dimensionless number describing the decaying behavior of the waves is defined by
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Y ¼ Imfxð1Þg=�x1: ð57Þ
When the dc bias is large enough the decay constant becomes negative indicating wave amplification. The
transition from damped waves to growing waves in (51) indeed occurs when (49) is true. These agree qual-
itatively with the behavior of the plane waves studied by White (1962).
Experimental results for acoustoelectric amplification of acoustic waves are available, e.g., surface waves

by Collins et al. (1968) and extensional waves in a plate by Dietz et al. (1988). Experimental study for the
amplification of the thickness-shear waves in a plate discussed in this paper can be performed in a way sim-
ilar to Dietz et al. (1988) where a lateral biasing electric field (Meitzler et al., 1988) is used. This is out of the
scope of the present paper.
6. Conclusion

Two-dimensional equations for coupled extensional, flexural and thickness-shear motions of thin plates
of piezoelectric semiconductors under a dc field are obtained. The equations are specialized to crystals of
6 mm symmetry. It is shown that semiconduction causes acoustic dispersion and loss in the propagation of
thickness-shear waves. The equations are useful in analyzing plate structures for devices, and surface waves
guided by thin films in the manner of Tiersten (1969b).
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