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Abstract

Two-dimensional equations for coupled extensional, flexural and thickness-shear motions of thin plates of piezo-
electric semiconductors are obtained systematically from the three-dimensional equations by retaining lower order
terms in power series expansions in the plate thickness coordinate. The two-dimensional equations are specialized to
crystals of 6 mm symmetry and are simplified by thickness-shear approximation. Propagation of thickness-shear waves
and their amplification by a dc electric field are analyzed.
© 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

Piezoelectric materials are either dielectrics or semiconductors (Auld, 1973). An acoustic wave propagat-
ing in a piezoelectric crystal is usually accompanied by an electric field. When the crystal is also semicon-
ducting, the electric field produces currents and space charge resulting in dispersion and acoustic loss
(Hutson and White, 1962). The interaction between a traveling acoustic wave and mobile charges in piezo-
electric semiconductors is called the acoustoelectric effect which is a special case of a more general phenom-
enon which may be called wave-particle drag (Weinreich et al., 1959). It was also found that an acoustic
wave traveling in a piezoelectric semiconductor can be amplified by application of an initial or biasing
dc electric field (White, 1962). Acoustoelectric effect and acoustoelectric amplification of acoustic waves
have led to many acoustoelectric devices, e.g., Kino (1976), Heyman (1978), Busse and Miller (1981),
and Dietz et al. (1988). The basic behavior of piezoelectric semiconductors and the acoustoelectric effect
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can be described by a linear phenomenological theory (Hutson and White, 1962; White, 1962). More
sophisticated nonlinear theories for deformable semiconductors have also been developed (de Lorenzi
and Tiersten, 1975; Maugin and Daher, 1986).

Piezoelectric devices, dielectrics or semiconductors, often have structural shapes of single or multi-
layered plates, or plates on substrates. Two-dimensional equations for thin piezoelectric dielectric plates
have been developed (Mindlin, 1972; Lee et al., 1987; Tiersten, 1993; Yong et al., 1993) and proved very
effective in device modeling (Wang and Yang, 2000). In this paper we study motions of thin plates of
piezoelectric semiconductors. The three-dimensional equations of linear piezoelectric semiconductors are
summarized in Section 2. Two-dimensional equations for thin plates are derived systematically from the
three-dimensional equations in Section 3. The equations are specialized to crystals of 6 mm symmetry in
Section 4. Propagation of thickness-shear waves under a dc field is analyzed in Section 5. Finally, some con-
clusions are drawn in Section 6.

2. Three-dimensional equations

Consider a homogeneous, one-carrier piezoelectric semiconductor under a uniform dc electric field E;.
The steady state current is J; = giu, E;, where ¢ is the carrier charge, 7 is the steady state carrier density
which produces electrical neutrality, and y;; is the carrier mobility. The summation convention for repeated
tensor indices is used. When an acoustic wave propagates through the material, perturbations of the electric
field, the carrier density and the current are denoted by E;, n and J;. The linear theory for small signals
(Hutson and White, 1962; Wauer and Suherman, 1997) consists of the equations of motion, Gauss’s law
of electrostatics, and the conservation of charge

Tj;= pil;,
D;; = qn, (1)
gn+J;; =0,

where u; is the displacement vector, T; the stress tensor, p the mass density, and D; the electric displacement
vector. A comma followed by an index denotes partial differentiation with respect to the coordinate asso-
ciated with the index. A superimposed dot represents differentiation with respect to time ¢. The above equa-
tions are accompanied by the following constitutive relations (White, 1962):

Ty = cijSu — ewjEx,
D; = eijSjk + &E;, (2)
Ji=qnu;E; + qn:uijE/ - qdli/'N/"

where the strain tensor Sy, the electric potential ¢, and the carrier density gradient N; are defined by
Sij = (uij +upi) /2,
E; = _¢,i7 (3)
N;=n;.

In (2), cju, ex; and g; are the elastic, piezoelectric and dielectric constants. dj; are the carrier diffusion con-
stants. With successive substitutions form (2) and (3), (1) can be written as five equations for u, ¢ and n

CijkiUk 1 + €ijP y; = P,
CikiUp,1i — €zj/'¢),fj =4qn, (4)

n— ﬁruijd),ij + :u'iijn,i —dyn;; = 0.
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On the boundary of a finite body with a unit outward normal »;, usually the mechanical displacement u; or
the traction vector T, the electric potential ¢ or the normal component of the electric displacement vector
Djn;, and the carrier density n or the normal current J;n; are prescribed (Wauer and Suherman, 1997).

3. Derivation of two-dimensional plate equations

Consider a piezoelectric semiconductor plate of thickness 2/ as shown in Fig. 1. Part of the plate major
surfaces may be electroded. The electrodes are assumed to be very thin and their mechanical effects will be
neglected as in Mindlin (1972), Lee et al. (1987), Tiersten (1993) and Yong et al. (1993). For a first-order
plate theory of coupled extensional, flexural and thickness-shear motions we make the following expansions
of the mechanical displacement, electric potential and carrier density:

g (1, %2, %3, 1) 2wl (x1, %2, 1) + w3l (01, %2, 1), a=1,2,
u3(xl7x27x3a t) - u(3 >(X1,X2, t) +x3uj<;])(x17x27t) +x§ugz>(xl7x27t>7
¢(X1,X2,X3,l) = d)(O)(xthvt) +x3¢(1)(-x17x27t)7

n(xy,x2,x3, 1) ”(0)(X1,x27f) +x3"(1>(x17x2a 1),

()

where we have introduced another conventlon that the indices ¢ and b assume 1 and 2 only but not 3. u°

are the plate extensmnal displacements, u3 ) the flexural displacement, and u(! the thickness-shear dlsplace-
ments. ug ) and u3 are the plate thickness stretch displacements accompanying extension and flexure, which
will be eliminated later through a stress relaxation condition. Substitution of (5) into (3) results in the fol-

lowing expressions of the strain, electric field and carrier density gradient:
S, 28V +x80, p=1,2,....6,

E = E" + x;EY (6)
N; =N +x3Ni1 ,
where, under the compact matrix notation (Tiersten, 1969a), the indices p and ¢ range from 1 to 6. The zero
and first order strains are defined as
O _ 0 g0 _ 0

1 2 = Uy R (7)
0) _ (0) (1) 0) _ ( ) (1) 0) __ (0) (0)
Sy =uz,+uy’,  Ss uyp+up, Sl =yt

X2
s X,
Electrodes X
v 3
X
2h 3] — 3

Fig. 1. Plan view and cross section of a thin plate of piezoelectric semiconductor.
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(1) (8)

We note that Sgo) and Sg') are involved with ug') and uf) which are to be eliminated later. The zero and first
order electric fields are given by

O L 0
and

BV =g, B =gl =0 (10
The zero and first order gradients of the carrier density are

R Y ) )
and

MO =D, N =, N =0, (12)

Integrating the equations in (1) and their products with x3 through the plate thickness respectively, we
obtain the following two-dimensional equations of motion, Gauss’s law and conservation of charge:

0 0 (0
T+ = 2
7%, + 1 = 2npily,
20
1 0 1 (1
O
0 o 40 _ )
Da,a+d —2hql’l s (13)
20

where the plate resultants and surface loads of various orders are defined by

h
{Tl(;')7Dl('n)7Jl(n)}:/ X’;{Tz;,-,DnJi}dxz,
—h
(14)

n n h n 4 h
tj ) - [x3T3j},h7 d< ) = [‘x3D3]7h’

" =ags)t,, n=0,1.

Since the plate is assumed to be thin, we make the stress relaxation approximation of vanishing normal
stress 7533 = 0. This implies, through (2); by setting i = j = 3, the following expression for u; ; in terms of
other components of the displacement and potential gradients:

1
Uz = ——— (033kluk,1 — C3333U33 — €k33Ek)~ (15)
C3333

We note that stress relaxation for thin anisotropic or piezoelectric plates can be made in ways more sophis-
ticated than the above, also involving T3, and T3, (Mindlin, 1972). That is not our main interest here. The
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above relaxation involving 733 is the major relaxation because in anisotropic plates couplings among exten-

sions in different directions are usually much stronger than couplings between extensions and shears. We

also note that in (15) u; 3 has been eliminated on the right-hand side because when i =j = 3 the two terms

containing u3 3 will cancel with each other. From (15) the thickness expansion or contraction accompanying

the extension and flexure of the plate due to Poisson’s effect can be found if wanted. Substituting (15) back

into (2);,, we obtain the following constitutive relations relaxed for thin plates:
Tij = CijuUp, — ék[jEka

_ _ (16)
D; = eyuy,; + &,E;,

where the relaxed material constants are defined by

Cijki = Cijki — ij33c33kl/c33337
Cuj = €rj — €x33C33i/C3333, (17)
& = & 1 enzeps/cann.

We note that the right-hand sides of (16) do not contain 33 and 753 = 0 is automatically satisfied by (16).
Integrating (16) and (2)3 through the plate thickness, we obtain the zero order constitutive relations
0 0) o0 0) (0

70 = (8509 — B,

DY = 2n(ely)s}) + &4E)"), (18)

I = 2h(gnp,EY + gn B — gd N)),
where, following Mindlin (1972), we have modified ¢;;; and e to cjj‘?,ﬁl and efj(.? through the introduction of
two shear correction factors k; and k, by the replacement of the following zero order strains:

S = Sy, S5 = kS (19)

The two correction factors should be determined by requiring the two fundamental thickness-shear reso-
nant frequencies obtained from the two-dimensional plate equations to be equal to the corresponding exact
frequencies predicted by the three-dimensional equations. With shear correction factors thus determined,
the two-dimensional plate equations and the exact three-dimensional equations yield the same frequencies
for a particular motion, i.e., the thickness-shear vibrations of a plate in the two fundamental thickness-
shear modes. Multiplying both sides of (16) and (2); by x; and integrating the resulting equation through
the plate thickness we have the first order constitutive relations

02
i =73 (@S — ewjEy "),
20, _
D) =2 ety 42,0, (20)
SO g N0
= (qrp,E;" + qn' ;B — qdyN;i").

In summary, we have obtained the two-dimensional equations of motion, Gauss’s law and conservation
of charge (13), the constitutive relations (18) and (20), and the displacement, potential and carrier density
gradients (7)—(12). With successive substitutions, (13) can be written as nine equations for the nine un-
knowns of ulo), ugo), ug()), u(11>, ugl), (l)(o), (l)(l), 79 and n'V. At the boundary of a plate with in-plane unit exte-

rior normal n and in-plane unit tangent s (Fig. 1), we may prescribe
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7O or @ 7O or u®, 7Y or u”,

nn ? ns ? n

W or oV T or 4V,

DY or ¥, DI or ¢V,

JO or n® g0 or nM.

4. Equations for crystals of 6 mm symmetry

Quite a few piezoelectric semiconductors are of 6 mm symmetry. This includes, e.g., widely used beryllium
oxide (BeO), cadmium selenide (CdSe), cadmium sulfide (CdS), zinc oxide (Zn0O), and zinc sulfide (ZnS)
(Auld, 1973). For crystals of 6 mm symmetry, when the 6-fold axis is along the x5 axis, the material tensors
in (2) can be represented by the following matrices under the compact matrix notation (Tiersten, 1969a):

ci e ez 00 0 0 0 ey)
ci, ¢ ¢33 0 0 0 0 0 e3
ci3 ci3 ¢z 0 0 0 0 0 ess
0 0 0 cu O 0| 0 e ’
0 0 0 0 ¢y O e;s 0 O
0 0 0 0 0 cg 0 0 O

€11 0 0
0 en 0|, (22)
0 0 €33

where cg6 = (11 — ¢12)/2, and the superscript “T” indicates matrix transpose. y; and d;; have the same struc-
ture as &;. The constitutive relations take the following form:

T\ = 2h(enul] +enuy) + e pV),
Ty = 2h(enuy) +enuyy + end'!),
%) = 2h[K2cas(uf) + ull) + rersp V)],

0 0 0
T = 2hegs(us + ul)),

W _ 25 w1
Ty :gh (011”1,1 +512”2,2)7

2 5. _
15 =S W @nu!] + enud)),

DY = 2h[xers(uy) +u) — en gl
DY) = 2h(exu) — &g,

2
sz]) = —§h3811¢$>,

<

510) = 2h‘1(_ﬁl‘11¢<2) + n(O)HnEa - dll”,(g))a
I = 2hq(—py ¢ + 0 s Ey — dyn),

=l
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2 B _
IO =3¢ + 0 Eg — dunl), (28)
where
Ci1 = —Cf3/6’33, Cip = c1p — ci3cn/cas,
@3 = e3 —e33¢31/C33, €33 = €33+ 6%3/C337

and k| = k, = k. Substitution of (23)—(28) into (13) yields the following equations for extension

ety + Costils, + (€12 + coo)uly + el + 21h 1" = pir), -
cséu(z?l)l + Enugz + (512 + C66)M(1?32 + 615(15le> 21h O — = pit, >>

flexure
W can (g, + 1)) + wersd ) + 0 — = pity (31)

2h 3

thickness-shear

- 3 .
c”u1 )+ cool')y + (@1 +066)u(221 — 3h 2P cqy (ul +u<301)) —3h zrcelsqﬁ + A" = pil!,

3
2§ (32)
066u2 “ + c“u2 22 + (e + 066)u(1112 —3h %k c44(u2 + u32) 3h” ;ce15q§ 2h3 (” = piigl),
electrostatics
—?11¢)aa+K€]5( ) —|—u<1>)+ d (0),
2h ; (33)
—endll) +3h e3¢ — 3h e u’ +2—h3d qn'V,
and conservation of charge
. _ = 1.
n(O) - n#llqb«,(z(l)zz + n,(g):ullEa - dlln,(ggz + 2_q](0> = 07
(34)

A _ ﬁ#n‘ﬁ% + 0y E, —dyn'l) — 3h72(—iipy3 " + 0O g Es — dssn™V) + 2h3qj

5. Propagation of thickness-shear waves

Thickness-shear waves are widely used in plate piezoelectric devices (Wang and Yang, 2000). As an exam-
ple for the application of the above equations we study the propagation of thickness-shear waves in a plate of
6 mm crystals. These waves are usually accompanied by weak flexural deformations. They are described by
ul) u§°>, $, and n'?, and are governed by (31)~(34); which are not coupled to the other equations.

5.1. Thickness-shear approximation
The weak flexural deformation accompanying thickness-shear can be eliminated by the so called

thickness-shear approximation (Tiersten, 1969a) which further simplifies the problem. We consider the
case when there are no surface loads. This means that the major surfaces of the plate are traction free,
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unelectroded without surface free charge, and that the surfaces are perfect without broken surface bonds so
that there is no surface charge and current due to semiconduction (Navon, 1986). Enlightened by the thick-
ness-shear approximation for a system of one-dimensional equations for quartz (Tiersten, 1969a), we pro-
ceed as follows. From (31) and (33);, we obtain, by eliminating ¢‘*,

i (044 + eiS) (), 4 1!y = BT 0 = i), (35)
én ' el
Substitution of the following wave solution into (35),
= Ay expli(wt + &.x,)],
= Apexpli(wt + &x,)], (36)
" = Bexpli(wr + &x,)),

where A4; and B are constants, results in the following relation:

Kejsq

e .
K (044 + 8—15> (=438, + 44ié,) — B = —pw’d;. (37)
11
We are interested in long waves with small wave numbers &,. The term quadratic in £, in the above equation
can be dropped. Also, since for long thickness-shear waves the frequency w is very close to the exact thick-
ness-shear frequency of an infinite plate, we make the following substitution in (37):

2 2
2 277'5044731(044
W=, = 2 2

4ph ph

where w,, is the exact infinite plate thickness-shear frequency. Note that (38) does not have the stiffening
effect due to piezoelectric coupling. This is because for a plate of 6 mm crystals with the 6-fold axis along
the plate normal, exact thickness-shear modes from the three-dimensional equations are elastic only with-
out piezoelectric coupling. In this case the shear correction factor x> = 7*/12 (Yang and Zhang, 1999).
These lead to the following approximate version of (37):

(38)

n 2 4n’
Ay = (1495 )ig g, + 20 (39)
3 C44€11 7'52044811
which is equivalent to the differential relation
n 4’ ke
O = 2 (1 4+ Bl 159 ,,0) 40
u) = =T () + T, (40)
where we have denoted
2
e
kg =—1—. (41)

C44811

Substituting (40) into (32) and (33);, neglecting the third and higher order derivatives of ugo) under the
long wave approximation, we obtain the following equations under the thickness-shear approximation:

(1 1 « (1 __Kkeisq o . (1
011“(1,31 + 066”(1,2)2 + 012“2,32 po’, ”1 — 307 key ¢ n,(1> = p”(l g
__keisqg (o (1
C66”2 11 + Cn”z 22 + 012”<1 12 - por, ”2 —3n K615¢ ”,(2> = p”(Z ! (42)

h2
_8]1¢aa+Ke Suaa+k15 3 qnaa —qn
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where

CTI = Ell + K2C44(1 + k%S)’ (43)
CYZ = Ci3 + Co6 + K2644(1 + ké),

and (34), remains the same.
5.2. Propagation of thickness-shear waves

We consider waves propagating in the minus x; direction with #, = 0 and d/0x, = 0. The biasing electric
field is applied in the x; direction. Real devices are finite plates. A biasing electric field in the x| direction
can be produced by side electrodes on the lateral surfaces where x; = constant, which is usually called a
lateral electric field (Meitzler et al., 1988) in comparison with the thickness field in the x3 direction. Then
(42) and (34); reduce to

i - Keysq .
011”(1%1)1 - Pw;“ﬁ” —3h 2K€15¢,(?) -2 n(?) = pu(ll)7
a 44
_ 811¢f?1) + Kelsu(ﬂf + k%qunf?i = qn, (44)
% — ﬁﬂllqs??l) + nf?)ﬂnEl - dnl’lf?f =0.
Let
u!) = Aexpli(&x — o)),
¢ = Bexpli(&x; — wt)], @5)

n'® = Cexpli(&x — 1)),

where A, B and C are undetermined constants. Substitution of (45) into (44) yields the following linear,
homogeneous equation for 4, B and C:

pl? — ) — iy & —3h Kensié, -
&1 A
2
. B 3 =0. 46
Keysié, 8115? —k%5 §(]5f —q c ( )
0 Ay & (& Ey — o) +dn&

For nontrivial solutions the determinant of the coefficient matrix has to vanish, which gives the following
dispersion relation:

2 ) ) nqpy,
pw” = pa-, + ¢}, & — - —
e 811[d115% +i(uEé — 0)]
1
(145708 to? - 02) - Gei + et (47
where

3x? 2

pat = pat + p—t 5 pe? (14 K2), (48)

2
ph™  €11Cu
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is the piezoelectrically stiffened infinite plate thickness-shear frequency when there exists a coupling to an
electric filed in the x; direction. The denominator of the right-hand side of (47) indicates that wave ampli-
fication may occur when p,,E, &, — @ changes it sign or

w _
5_1: HinEn, (49)

i.e., the acoustic wave speed is equal to the carrier drift speed (White, 1962). When the semiconduction is
small, (47) can be solved by an iteration or perturbation procedure. As the lowest (zero) order of approx-
imation, we neglect the semiconduction and (47) reduces to the dispersion relation of piezoelectric thick-
ness-shear waves

Pw%()) = pd)czxy + 0715%7 (50)

which is dispersive but not dissipative. For the next order we substitute (50) into the right-hand side of (47)
and obtain

) 5 . 2 nqpy
pwiy, = pa, + ¢ & — ——
M e enldn& +i(uyEiéy — o))
1 22 x
x { (1 - ghzk%sf%> [p(efyy — %) = &eiy] + sz%sc44i?}> (51)

which is dispersive and dissipative.
5.3. Numerical results

For numerical results we consider CdS with (Auld, 1973; Gualtieri et al., 1994)
p = 4820 kg/m’,
ci1 =9.07, ¢33 =938, cu=1504, ¢, =581, c¢3=25.10x10"N/m?,

eis=—021, e3 =-024, e =-044C/m’ (52)
e =9.02¢9, &3 =9.538), & =8.854x 1072 F/m.

The mobility of electrons and holes of CdS at 300 K are (Navon, 1986)
u, =340, p,=50cm’*/Vs. (53)

We consider electrons with u,. The diffusion constants can be determined from the Einstein relation (Na-
von, 1986)

where T is the absolute temperature, and k the Boltzmann constant. At room temperature k7/q, = 0.026 V
(Navon, 1986) where g, = 1.602 x 10~'° C is the electronic charge. Present technology can make a material
with 7 of any value between an insulator and a conductor. We use 7 = 10"* /m* which is considered small in
the sense that the conduction term in (51) is much smaller than other terms so that the perturbation solu-
tion is valid.

We plot the real parts of wy and oy, versus ¢; in Fig. 2. The dimensionless wave number X and the
dimensionless frequency Y of different orders are defined by

T _ _
X = fl/zh, Y(O) = CO(())/COOC, Y(]) = Re{w(l)}/wx. (55)
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1025 TY
Yo
1.02 1 Y(1) (v=1.89)

Y1) (=4.73)

1.015

1.01

1.005
X

004 006 0.08

1 T T
0 0.02

Fig. 2. Dispersion relations of thickness-shear waves; X = dimensionless wave number; Y = real part of the dimensionless frequency;
y = normalized biasing electric field.

y is a dimensionless number given by
—  J@2h
V/lnEl/ . (56)

which may be considered as a normalized electric field. It represents the ratio of the electron drift velocity
and a quantity related to the acoustic wave speed. In applications long thickness-shear waves with a small X
are useful. When X = 0 thickness-shear waves have a nonzero cutoff frequency which is normalized to one
in the figure. The behavior of thickness-shear waves in a piezoelectric insulator is described by Y{o) which is
dispersive. It can be seen that semiconduction causes additional dispersion and a shift of the cutoff fre-
quency. This conduction induced dispersion and frequency shift vary according to the dc electric biasing
field.

Fig. 3 shows the imaginary part of e, versus y which represents E;. 4 = 2n/¢; is the wavelength. The
dimensionless number describing the decaying behavior of the waves is defined by

0T 2=10%(2h)

- 2=15x(2h)

1 1 1 1 Ly
12.51 15.63

-10+
20+
.30+

40+

Fig. 3. Dissipation as a function of the dc bias; Y = imaginary part of the dimensionless frequency; y = normalized biasing electric
field; A = 2n/¢;.
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Y = Im{w(l)}/(bm. (57)

When the dc bias is large enough the decay constant becomes negative indicating wave amplification. The
transition from damped waves to growing waves in (51) indeed occurs when (49) is true. These agree qual-
itatively with the behavior of the plane waves studied by White (1962).

Experimental results for acoustoelectric amplification of acoustic waves are available, e.g., surface waves
by Collins et al. (1968) and extensional waves in a plate by Dietz et al. (1988). Experimental study for the
amplification of the thickness-shear waves in a plate discussed in this paper can be performed in a way sim-
ilar to Dietz et al. (1988) where a lateral biasing electric field (Meitzler et al., 1988) is used. This is out of the
scope of the present paper.

6. Conclusion

Two-dimensional equations for coupled extensional, flexural and thickness-shear motions of thin plates
of piezoelectric semiconductors under a dc field are obtained. The equations are specialized to crystals of
6 mm symmetry. It is shown that semiconduction causes acoustic dispersion and loss in the propagation of
thickness-shear waves. The equations are useful in analyzing plate structures for devices, and surface waves
guided by thin films in the manner of Tiersten (1969b).
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